Brazilian Journal of Physical Therapy 2018;xxx(xx):xxx-xxx

Brazilian Journal of Physical Therapy

https://www.journals.elsevier.com/brazilian-journal-of-physical-therapy

ORIGINAL RESEARCH

- Is there any association between abdominal strength
- training before and during pregnancy and delivery
- outcome? The Norwegian Mother and Child Cohort
- Study

⁸ Q1 Eirin Rise^{a,*}, Kari Bø^{a,c}, Wenche Nystad^b

^a Department of Sport Medicine, Norwegian School of Sport Sciences, Pb 4014 Ullevål Stadion, 0806 Oslo, Norway

^b Department of Chronic Diseases, Norwegian Institute of Public Health, Pb 222 Skøyen, 0213 Oslo, Norway

¹¹ ^c Department of Obstetrics and Gynecology, Akershus University Hospital, Pb 1000, 1478 Lørenskog, Norway

Received 26 March 2018; accepted 25 June 2018

13	KEYWORDS	Abstract
14	Abdominals;	Background: Abdominal strength training before and during pregnancy has been recommended
15	Gestation;	to enhance normal vaginal birth by enabling increased force needed for active pushing. However,
16	Physical activity;	to date there is little research addressing this hypothesis.
17	Exercise;	Objective: To investigate whether nulliparous pregnant women reporting regular abdominal
18	Pre-natal;	strength training prior to and at two time points during pregnancy have reduced risk of cesarean
19	Post-natal	section, instrumental assisted vaginal delivery and third- and fourth-degree perineal tears.
20		Methods: Analysis of 36 124 nulliparous pregnant women participating in the Norwegian Mother
21		and Child Cohort Study during the period 1999-2009 who responded to questions regards the
22		main exposure; regular abdominal strength training. Data on delivery outcomes were retrieved
23		from the Medical Birth Registry of Norway. Logistic regression analyses were used to evaluate
24		the association between exposure and outcome before pregnancy and at gestational weeks 17
25		and 30.
26		Results: Amongst participants, 66.9% reported doing abdominal strength training exercises
27		before pregnancy, declining to 31.2% at gestational week 30. The adjusted odds ratios were
28		0.97 (95% CI 0.79-1.19) for acute cesarean section, among those training with the same fre-
29		quency before and during pregnancy compared to those that never trained. The results were
30		similar for instrumental assisted vaginal delivery and third- and fourth-degree perineal tear.
31		<i>Conclusion</i> : There was no association between the report of regular abdominal strength training
32		before and during pregnancy and delivery outcomes in this prospective population-based cohort.
33		© 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Published by Elsevier
34		Editora Ltda. All rights reserved.

* Corresponding author. Norwegian School of Sport Sciences, Department of sports Medicine. Pb 4014, Ullevål stadion, 0806 Oslo, Norway. *E-mail*: enygaardr@gmail.com (E. Rise).

https://doi.org/10.1016/j.bjpt.2018.06.006

35

1413-3555/© 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Published by Elsevier Editora Ltda. All rights reserved.

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

2____

³⁶ Introduction

Today, healthy women are encouraged to engage in daily 37 physical activity throughout pregnancy.¹⁻³ Both endurance 38 training and strength training are recommended, and from 39 a health perspective pregnant women are encouraged to 40 engage in 30 min of moderate intensity aerobic training 41 every day.¹ Davies et al.² recommend strength training of 42 the major muscle groups 3-4 times per week and suggest 43 that abdominal strength training is important to strengthen 44 "the muscles of labor". 45

Several studies have investigated the level of phys-46 ical activity⁴⁻⁶ and exercise training⁷ during pregnancy 47 in population-based studies. However, to date, there is 48 scant knowledge to which extent pregnant women per-49 form abdominal exercises. Strong abdominal muscles have 50 been claimed to contribute to a more effective birth in 51 terms of shorter duration of second stage of labor.⁸⁻¹⁰ Fur-52 thermore, Bovbjerg and Siega-Riz¹¹ have postulated that 53 strong abdominal muscles might make the second stage 54 of birth more effective, thereby reducing the risk of fail-55 ure to progress and cesarean section. The theory is that 56 when the women are asked to actively push during the 57 uterine contractions, strong and well-trained abdominals 58 would improve the effectiveness of the pushing and thereby 59 shorten the duration of the second stage of labor. Despite 60 the Canadian recommendations² and the aforementioned 61 theories,⁸⁻¹¹ there is a paucity of research addressing a pos-62 sible association between strength training of the abdominal 63 muscles and delivery mode.¹² For this reason, the Norwegian 64 Mother and Child Cohort Study (MoBa) included questions 65 on abdominal training. MoBa is linked to the Medical Birth 66 Registry of Norway (MBRN) and therefore allows analysis of 67 exercise exposure and birth outcome. 68

The aims of the present study were to investigate:

 The number of women reporting to engage in strength training of the abdominal muscles before and during pregnancy.

The association between self-reported abdominal
 strength training before and during pregnancy and acute
 cesarean section, instrumental assisted vaginal delivery
 and third- and fourth-degree perineal tear.

77 Material and methods

78 Study design

69

This cohort study is based on the data from the MoBa study
 conducted by the Norwegian Institute of Public Health.^{13,14}

81 Setting

Participants were recruited from 52 hospitals in the period 1999–2008. The current prospective cohort study is based on version 5 of the quality-assured data file released for research in April/May 2011. Informed consent was obtained from each MoBa participant upon recruitment. The establishment and data collection in MoBa has obtained a license from the Regional Committee for Medical Research Ethics in

Figure 1 Flow chart of the study participants.

South-Eastern (S-97045, S-95113) and the Norwegian Data Inspectorate (01/4325).

Participants

The Moba cohort includes a total of 108000 pregnancies: 84200 children, about 90700 mothers and 71500 fathers. The women were recruited through postal invitation prior to the routine ultrasound examination in gestational weeks 17 and 18.13 The inclusion of study participants is shown in Fig. 1. Of the 108842 women included in the data file, approximately 60% were excluded because of multiparity and multiple pregnancies. An additional group was excluded because of participation in a pilot study where other questionnaires were used for our primary exposure variables (Questionnaires Q1 and/or Q3). Women not responding to Q1 and/or Q3 in the main study were also excluded. This left 39626 nulliparous pregnant women for inclusion in the present study. Due to delayed data delivery by MBRN, a group of women were excluded because of missing information on the study outcomes. We also excluded women with cesarean delivery other than acute (elective and undefined cesarean section). Thus the final sample comprises 36 124 primiparous women with a singleton pregnancy.

Abdominal training and delivery outcome

MoBa questionnaires was sent out during and after preg-111 nancy and included items about maternal, paternal, and the 112 child's health and lifestyle. Three of the questionnaires were 113 sent out during pregnancy. The questionnaires distributed at 114 gestational weeks 17-18 and 30 included specific questions 115 on abdominal, back, and pelvic floor muscle training and 116 questions regarding habitual physical activity. The overall 117 response rate for MoBa is 41%. Amongst women participat-118 ing in MoBa, 94.9% completed the 17–18-week questionnaire 119 and 91.8% the 30-week guestionnaire.¹³ 120

121 Variables

The main exposure in the present study was maternal report 122 of strength training of the abdominal muscles 3 months prior 123 to pregnancy and at both time points during pregnancy. 124 The women were asked to report frequency of abdominal 125 strength training with the alternatives "never", "one to 126 three times per month", "once a week", "twice a week", 127 and "three or more times a week". In the analyses, the cat-128 egories ''once a week'' and ''twice a week'' were collapsed 129 to one category "one to two times a week", whereas the 130 rest of the categories remained as original. The question 131 was asked retrospectively at gestational week 17-18 (Q1) 132 for the 3 months prior to pregnancy and cross-sectional for 133 gestational week 17-18 (Q1) and week 30 (Q3). 134

The main outcomes were acute cesarean section, for-135 ceps, and/or vacuum-assisted delivery and third- and 136 fourth-degree perineal tear as registered in MBRN.¹⁵ The 137 outcomes were registered by qualified health personnel in 138 a standardized form at the respective birth clinics. For-139 ceps and vacuum-assisted deliveries were collapsed to one 140 variable: instrumental assisted vaginal delivery. Third- and 141 142 fourth-degree perineal tear were collapsed to one variable: third- and fourth-degree perineal tear. 143

Potential confounders for acute cesarean section, 144 instrumental assisted vaginal delivery, and third- and fourth-145 degree perineal tear were selected based on literature 146 review and cross-tabulations. The included confounders in 147 the main analyses were: maternal age (continuous variable 148 in years), pre-pregnancy body mass index (BMI) (kg/m², con-149 tinuous variable), highest level of education (categorized 150 in primary school, secondary school, college/university), 151 general physical activity level (defined as the frequency 152 of participation in recreational activity, categories like the 153 main exposure), pelvic floor muscle training (PFMT) (cate-154 gorized like the main exposure), head circumference (cm), 155 birth weight (defined as less than or more than 4000 g), and 156 dystocia (defined as yes or no registered by MBRN (analyzed 157 for instrumental assisted vaginal delivery only)). Smoking 158 and physically demanding work did not influence the esti-159 mates in subanalyses using logistic regression models and 160 were consequently not included in the main analyses (in 161 the subanalyses, we included the factors smoking and/or 162 physically demanding work as additional factors to the main 163 analyses to see the potential influence). We included the 164 following covariates in additional subanalyses for each out-165 come to see whether they influenced the main analyses: 166 167 (1) acute cesarean section: dystocia, fear of childbirth, induction of labor, and epidural; (2) instrumental assisted 168 169 vaginal delivery: fear of childbirth, induction of labor, and epidural; and (3) third- and fourth-degree perineal tear: instrumental assisted vaginal delivery, fear of childbirth, and episiotomy.

Statistical methods

Demographical characteristics are presented as means with standard deviations (SD) or frequencies and percentages. Chi-square analysis was used to investigate the change in reported frequency of abdominal strength training during pregnancy. Separate logistic regression models were used to assess the association between the exposure and each of the three outcomes adjusting for potential confounders. Two models were constructed for each outcome. One model included reported abdominal strength training retrospectively for the period 3 months prior to pregnancy and the second model included reported abdominal strength training performed at all three time points (3 months prior to pregnancy, gestational weeks 17 and 30). In the analysis including all three time points, the exposure variable abdominal strength training had the following categories: training with the same frequency at all time points, training with a varied frequency at all time points seen together or no strength training of the abdominal muscles at all timepoints.¹⁶ The variable PFMT was categorized like the main exposure and the variable general physical activity level was taken from the time point 3 months prior to pregnancy. All the other variables in the analysis were similar in the two models. The reference group in both analyses was the group reporting no abdominal strength training. Only women with information on all included variables are included in the analyses. In the analysis of perineal tears, only women with vaginal deliveries were included. Thus, the sample sizes included in the different analyses differ between outcomes. The results are presented as crude and adjusted odds ratios with 95% confidence intervals (CIs). Statistical analyses were conducted with PASW Statistics for Windows, version 18 (Chicago, USA).

Results

Background variables are shown in Tables 1 and 2. The majority of the women had normal pre-pregnancy BMI, had completed higher education (college/university), and was married or cohabitants.

Amongst participants, 3999 (11.1%) underwent acute cesarean section, 6382 (17.7%) instrumental assisted vaginal delivery (forceps and vacuum), and 2051 (5.7%) had thirdor fourth-degree perineal tear.

Numbers and percentages of women reporting to perform abdominal strength training before and during pregnancy are reported in Table 3. During pregnancy, there was a significant decline in number of women reporting abdominal strength training (p < 0.001). Forty-seven percent of the women reduced their frequency of abdominal strength training from 3 months pre-pregnancy to gestational week 17. There was a further reduction in frequency of abdominal strength training from gestational week 17 to gestational week 30, 27% of the women reported to reduce their activity. At gestational week 30, 31% of the women reported to do abdominal strength training.

Please cite this article in press as: Rise E, et al. Is there any association between abdominal strength training before and during pregnancy and delivery outcome? The Norwegian Mother and Child Cohort Study. *Braz J Phys Ther.* 2018, https://doi.org/10.1016/j.bjpt.2018.06.006

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

4

ARTICLE IN PRESS

Table 1 Demographic characteristics of the study participants ($n = 36\,124$). Data presented as means with standard deviation (SD) or frequency (n) and percentages (%).

	N/mean	%	SD
Age (years)(mean)	28.3		4.4
Pre-pregnancy BMI (kg/m ²) (mean)	23.7		3.9
Underweight: <18.5	1199	3.3	
Normal weight: 18.6–24.9	24056	66.6	
Overweight: 25–29.9	7080	19.6	
Obesity class I: 30–34.9	2268	6.3	
Obesity class II: \geq 35	692	1.9	
Missing	829	2.3	
Highest level of education			
Primary school: 9 years	863	2.4	
Secondary school: 12 years	10 640	29.5	
College/university: >12 years	22 283	61.7	
Missing	2338	6.5	
Marital status			
Married/cohabitant	34236	94.8	
Other	1888	5.2	

Table 4 shows crude and adjusted odds ratios for report of 227 abdominal strength training 3 months before pregnancy and 228 acute cesarean section, instrumental assisted vaginal deliv-229 ery, and third- and fourth-degree perineal tear. There was no 230 significant association between abdominal strength training 231 and any of the delivery outcomes. Adjusting for fear of child-232 birth, dystocia, induction of labor, epidural, episiotomy (for 233 perineal tear only), or instrumental assisted vaginal delivery 234 (for perineal tear only) had no influence on the results. 235

Table 5 shows the crude and adjusted odds ratios for 236 report of abdominal strength training before pregnancy and 237 at all time points during pregnancy combined and the deliv-238 ery outcomes. There was no association between either 239 varied training frequency or training with the same fre-240 quency before and during pregnancy with mode of delivery 241 or perineal tears. Adjusting for plausible confounders (fear 242 of childbirth, dystocia, induction or epidural, episiotomy 243 (for perineal tear only), instrumental assisted vaginal deliv-244 ery (for perineal tear only)) had no influence on the results. 245

Table 2 Participation in general physical activity of the study participants ($n = 36\,124$). Data presented as frequency (n) and percentages (%).

	N	%
Three months pre-pregnancy		
Never	2583	7.2
1-3 times per month	4169	11.5
1 time per week	4204	11.6
2 times per week	4776	13.2
\geq 3 times per week	20 147	55.8
Missing	245	0.7
Gestational week 17		
Never	5926	16.4
1-3 times per month	6238	17.3
1 times per week	5650	15.6
2 times per week	5037	13.9
\geq 3 times per week	12 383	34.3
Missing	890	2.5
Gestational week 30		
Never	9386	26.0
1-3 times per month	6441	17.8
1 time per week	5895	16.3
2 times per week	4542	12.6
\geq 3 times per week	9661	26.7
Missing	199	0.6

Discussion

The main findings of this prospective pregnancy cohort study on abdominal strength training and delivery outcome were that two-thirds of the women reported to engage in strength training of the abdominal muscles before pregnancy. This declined to a third of the participants at gestational week 30. However, there was no association between maternal reports of abdominal strength training before and during pregnancy and acute cesarean section, instrumental assisted vaginal delivery, or third- and fourth-degree perineal tears.

The main strengths of the study are the large sample size and the access to longitudinal data on several exposures and plausible confounders. The MBRN is considered a reliable source of information related to birth,¹⁷ and in Norway this registration is mandatory for all women giving

	.). 2000 p. 000.000 00	Time	period			
Frequency of training	3 month pre-pregnancy	%	Gestational week 17	%	Gestational week 30	%
Never	10 964	30.4	19 001	52.6	23 425	64.8
1-3 times per month	6853	19.0	6183	17.1	3887	10.8
1 time per week	5401	15.0	4132	11.4	3538	9.8
2 times per week	6724	18.6	2804	7.8	2320	6.4
\geq 3 times per week	5218	14.4	1449	4.0	1556	4.3
Total	35 160	97.3	33 569	92.9	34726	96.1
Missing	964	2.7	2555	7.1	1398	3.9

Table 3 Frequency of abdominal strength training during three different time points: 3 months pre-pregnancy, gestational week 17 and 30 (n = 36124). Data presented as numbers of women (n) and percentages (%).

Please cite this article in press as: Rise E, et al. Is there any association between abdominal strength training before and during pregnancy and delivery outcome? The Norwegian Mother and Child Cohort Study. *Braz J Phys Ther.* 2018, https://doi.org/10.1016/j.bjpt.2018.06.006

246

248

249

250

258

259

260

Abdominal training and delivery outcome

_
•
-
-

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Table 4 Logistic reg and third- and fourth-	ressions degree	for abo	domina al tear	al strength tr $(n = 26998)$	aining 3 for the	months pre- women in Mo	pregnar ıBa. Dat	icy and a prese	acute (ented a	cesarean se as cOR and a	ction (r aOR wit	n = 30 178), in ch 95% Cl.	strumer	tal assi	sted vaginal del	ivery (n	= 30178),
requency of training			Acute	cesarean se	ction		_	nstrume	ental a	ssisted vagi	nal del	ivery	Thi	d- and	fourth-degree	perinea	l tear
	z	%so	cOR	95% CI	aOR ^{cs}	95% CI	z	%so	cor	95% CI	aOR ^{id}	95% CI	» z	s col	K 95% CI	aORpt	95% CI
Vever	9622	11.3	1.00		1.00		9622	17.5	1.00		1.00		8535 7	.0 1.0	0	1.00	
I-3 times a month	5918	10.4	0.92	0.83-1.02	1.03	0.91-1.16	5918	17.0	0.97	0.89-1.05	0.98	0.89-1.09	5300 7	.1 1.0	1 0.88-1.15	1.10 (0.95-1.28
I-2 times a week	10286	10.2	0.89	0.82-0.98	1.08	0.96-1.21	10 286	18.3	1.05	0.98-1.13	1.06	0.97-1.17	9237 6	.0 0.8	4 0.75-0.95	0.99 (0.86-1.15
2 times a week	4352	9.8	0.85	0.76-0.96	1.05	0.90-1.24	4352	16.9	0.96	0.87-1.05	1.00	0.87-1.14	3926 5	.2 0.7	2 0.61-0.85	0.96 (0.77-1.19
aOR, adjusted odds rat	io; cOR,	crude c	odds ra	tio; CI, confic	dence in	terval; N, fre	duency	of partic	cipants.								
so Percentage of study	outcom	e (acuté	e cesar	ean section,	instrum	ental assisted	vaginal	delivery	/, third	- and fourth	-degree	perineal tea	<u>.</u>				
cs Adjusted for matern	al age, I	pre-pre	gnancy	' body mass ir	idex (BN	II), highest le	vel of e	ducation	I, genei	ral physical	activity	level, PFMT,	head cir	cumfere	nce, and birth w	/eight.	
^{id} Adjusted for materr ^{pt} Adjusted for matern	al age, al age,	pre-pre	gnancy gnancy	r BMI, highest BMI, highest	level of level of	education, g education, g	eneral p eneral p	hysical	activity	y level, PFM y level, PFM	T, head T, head	circumferenc	e, birth e, and b	weight, irth wei	and dystocia. ght.		

birth. The follow-up rate of more than 90% also strengthens the study.¹³ The study's hypotheses was not known to the women when they answered the questionnaires, which may limit the potential impact of information bias.

The main limitation of the study is the use of guestionnaire data to assess frequency of abdominal strength training without any clinical assessment of actual abdominal muscle strength. Self-report may overestimate all training estimates and recall bias is a possible threat to the accuracy of self-report, in general. In the present study, retrospective maternal report of training 3 months before conception may be a special weakness.¹⁸ In addition, we have no information of the type of abdominal exercises (e.g. sit up or core stability training). Even with reliable self-reporting, there is no guarantee that the conducted abdominal strength training resulted in stronger abdominal muscles. Nevertheless, to date, there is scant knowledge about the effect of abdominal strength training in general during pregnancy, and as far as we have ascertained there are no studies evaluating the validity of report of abdominal strength training and actual increase in muscle strength. Combining the answers from three exposure points into one variable may improve the validity of the report as it indicates that the responders are "true" exercisers. Low response rate is one of the main challenges of conducting population-based studies. Nilsen et al.¹⁴ evaluated the differences between the participants in MoBa and the population in general to see whether there was a case of selection bias in MoBa. They found that younger and single women were underrepresented in MoBa, as also smokers. There were also a lower rate of preterm deliveries, lower gestational age, and babies with higher Apgar score and larger head circumference in the MoBa group. This can indicate a socioeconomic difference between MoBa participants and the population, in general.¹³ Such differences might affect the associations between the exposures during pregnancy and different outcomes.¹⁴ Thus, we cannot exclude that selection bias might have influenced our results. The gold standard design to rule out causality for abdominal strength training to influence delivery outcome would be a randomized controlled trial (RCT). However, given the low incidence of the main outcomes, a randomized controlled trial with these as main outcome variables would require a huge sample size and may not be feasible.

A few RCTs have reported the effect of strength training in relation to pregnancy and delivery.¹⁹⁻²³ None of these studies found differences between the group that performed strength training and the group that did not train on delivery outcomes (acute cesarean section, instrumental assisted vaginal delivery). However, none of these RCTs had a primary aim to investigate the effect of abdominal strength training alone on acute cesarean section rate, instrumental assisted vaginal delivery, and third- and fourth-degree perineal tear. In addition, none measured abdominal strength before and after the intervention and none reported on which abdominal exercises that had been performed. Hence, to date, the evidence for the effect of abdominal strength training on delivery outcome is not clear.

To date, there is also scant knowledge about normal activity of the abdominal muscles during pregnancy and labor. Early studies from the 1950s and 1960s found that the electrical activity of the abdominal muscles decline as the pregnancy progresses.^{24,25} More recently, Oliveira et al.²⁶

 Table 5
 Logistic regressions for abdominal strength training before and during pregnancy (3 months pre-pregnancy, gestational weeks 17 and 30) and acute cesarean section (n = 29 034), instrumental assisted vaginal delivery (n = 29 034), and third- and fourth-degree perineal tear (n = 25 992) for the women in MoBa. Data presented as cOR and aOR with 95% CI.

Frequency of training			Acute	cesarean se	ection		l	nstrum	nental	assisted vag	inal de	livery	Th	nird-	and fo	urth-degree	perinea	al tear
	N	% <mark>so</mark>	cOR	95% CI	aOR ^{cs}	95% CI	N	% ^{so}	cOR	95% CI	aOR ^{id}	95% CI	N	% ^{so}	cOR	95% CI	aOR ^{pt}	95% CI
Never	6764	11.3	1.00		1.00		6764	17.4	1.00		1.00		6003	6.9	1.00		1.00	
The same frequency	2041	9.6	0.84	0.71-0.99	0.97	0.79-1.19	2041	17.5	1.00	0.88-1.14	0.99	0.83-1.17	1845	5.7	0.82	0.66-1.02	0.99	0.76-1.29
Varied frequency	20 22 9	10.3	0.91	0.83-0.99	1.05	0.95-1.17	20 22 9	17.6	1.01	0.94-1.08	1.04	0.96-1.14	18144	6.4	0.92	0.82-1.03	1.08	0.94-1.24

aOR, adjusted odds ratio; cOR, crude odds ratio; CI, confidence interval; N, frequency of participants.

^{so} Percentage of study outcome (acute cesarean section, instrumental assisted vaginal delivery, and third- and fourth-degree perineal tear).

^{cs} Adjusted for maternal age, pre-pregnancy body mass index (BMI), highest level of education, general physical activity level (pre-pregnancy), PFMT (categories like the exposure), head circumference, and birth weight.

^{id} Adjusted for maternal age, pre-pregnancy BMI, highest level of education, general physical activity level (pre-pregnancy), PFMT (categories like the exposure), head circumference, birth weight, and dystocia.

^{pt} Adjusted for maternal age, pre-pregnancy BMI, highest level of education, general physical activity level (pre-pregnancy), PFMT (categories like the exposure), head circumference, and birth weight.

Abdominal training and delivery outcome

confirmed that there is activity in the abdominals during 323 labor. They also found a negative correlation between the 324 diastasis recti abdominis and electrical activity in m. rec-325 tus abdominis, but no correlation between the activity in 326 m. rectus abdominis and m. obliguus externus and duration 327 of second stage of labor. Buhimschi et al.²⁷ investigated the 328 change in intra-uterine pressure during contractions in the 329 second stage of labor and found an increase of 62% when 330 the mother performed the Valsava maneuver. To the best 331 of our knowledge, there are no published studies on the 332 effect of strength training on the abdominal muscles and 333 the ability to increase intra-abdominal pressure in pregnant 334 women. There is also uncertainty to the effect of different 335 pushing techniques during delivery (open or closed glottal 336 slit) and delivery mode.^{28,29} Women's health physical ther-337 apists are in close contact with pregnant women and are 338 often asked questions about exercise during pregnancy. It is 339 important that the advices and recommendations given by 340 health personnel are evidence-based. Current recommen-341 dations for abdominal strength training during pregnancy 342 343 are limited to advice against doing exercises in the supine position after the fourth month of pregnancy.³⁰ To date, 344 there is sparse knowledge on which abdominal exercises 345 are safe for pregnant women both before and during preg-346 nancy and especially the effect of abdominal training on 347 birth outcome. The results of the present study indicate 348 that abdominal training may not influence birth outcomes. 349 However, there is an urgent need for further clinical studies 350 to elaborate on this issue, both the role of the abdominal 351 muscles during delivery and the effect of abdominal train-352 ing during pregnancy on abdominal strength and how it may 353 affect other outcomes. Hopefully our results will stimulate 354 to more research. 355

356 Conclusions

A third of the participating women engaged in strength train-357 ing of the abdominal muscles before and during all time 358 points of their pregnancy. However, there was no associa-359 tion between self-reported abdominal strength training and 360 delivery outcomes in this large population-based pregnancy 361 cohort study. To be able to give pregnant women advice 362 regarding abdominal strength training there is an urgent 363 need for further research. 364

365 Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector. The Norwegian Mother and Child Cohort Study is however supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, NIH/NINDS (grant no.1 UO1 NS 047537-01 and grant no. 2 UO1 NS 047537-06A1).

373 Acknowledgements

We are grateful to all the participating families in Norway who take part in this on-going cohort study. We also thank Professor Ingar Morten K. Holme for statistical advice, Maria Kristine Magnus for assistance with the MoBa data and Ingrid Nygaard for assistance with English revision.

References

- 1. Committee Opinion No. 650: Physical Activity and Exercise During Pregnancy and the Postpartum Period. *Obstet Gynecol* 2015;126(6):e135-e142.
- 2. Davies GA, Wolfe LA, Mottola MF, MacKinnon C. Joint SOGC/CSEP clinical practice guideline: exercise in pregnancy and the postpartum period. *Can J Appl Physiol*. 2003;28(3):330–341.
- 3. Royal College of Obstetricians and Gynaecologists. Exercise in pregnancy. RCOG Statement No. 4; 2006.
- 4. Haakstad LA, Voldner N, Henriksen T, Bø K. Why do pregnant women stop exercising in the third trimester? *Acta Obstet Gynecol Scand*. 2009;88(11):1267–1275.
- Mottola MF, Campbell MK. Activity patterns during pregnancy. Can J Appl Physiol. 2003;28(4):642–653.
- Owe KM, Nystad W, Bø K. Correlates of regular exercise during pregnancy: the Norwegian Mother and Child Cohort Study. Scand J Med Sci Sports. 2009;19(5):637–645.
- 7. Gjestland K, Bo K, Owe KM, Eberhard-Gran M. Do pregnant women follow exercise guidelines? Prevalence data among 3482 women, and prediction of low-back pain, pelvic girdle pain and depression. *Br J Sports Med.* 2013;47(8):515–520.
- 8. Aua RS, Bullock-Saxton J, Markwell S. *Women's health: a textbook for physiotherapists.* London: WB Saunders; 1998.
- 9. Gilleard WL, Brown JM. Structure and function of the abdominal muscles in primigravid subjects during pregnancy and the immediate postbirth period. *Phys Ther*. 1996;76(7):750–762.
- Noble E. Essential exercises for the childbearing year: a guide to health and comfort before and after your baby is born. London: Murray; 1985.
- 11. Bovbjerg ML, Siega-Riz AM. Exercise during pregnancy and cesarean delivery: North Carolina PRAMS, 2004–2005. *Birth*. 2009;36(3):200–207.
- Poyatos-Leon R, Garcia-Hermoso A, Sanabria-Martinez G, Alvarez-Bueno C, Sanchez-Lopez M, Martinez-Vizcaino V. Effects of exercise during pregnancy on mode of delivery: a meta-analysis. *Acta Obstet Gynecol Scand*. 2015;94(10):1039–1047.
- 13. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort profile update: The Norwegian Mother and Child Cohort Study (MoBa). *Int J Epidemiol*. 2016;45:382–388. https://doi.org/10.1093/ije/dyw029.
- 14. Nilsen RM, Vollset SE, Gjessing HK, et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. *Paediatr Perinat Epidemiol*. 2009;23(6):597–608.
- 15. Irgens LM. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. *Acta Obstet Gynecol Scand*. 2000;79(6):435–439.
- Bø K, Fleten C, Nystad W. Effect of antenatal pelvic floor muscle training on labor and birth. *Obstet Gynecol*. 2009;113(6):1279–1284.
- Borthen I, Lossius P, Skjærven R, Bergsjø P. Changes in frequency and indications for cesarean section in Norway 1967–1984. Acta Obstet Gynecol Scand. 1989;68(7):589–593.
- 18. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. *Br J Sports Med.* 2003;37(3):197–206.
- Agur W, Steggles P, Waterfield M, Freeman R. Does antenatal pelvic floor muscle training affect the outcome of labour? A randomised controlled trial. *Int Urogynecol J Pelvic Floor Dysfunct*. 2008;19(1):85–88.
- 20. Barakat R, Ruiz JR, Stirling JR, Zakynthinaki M, Lucia A. Type of delivery is not affected by light resistance and toning exercise

Please cite this article in press as: Rise E, et al. Is there any association between abdominal strength training before and during pregnancy and delivery outcome? The Norwegian Mother and Child Cohort Study. *Braz J Phys Ther.* 2018, https://doi.org/10.1016/j.bjpt.2018.06.006

441

7

377

378

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

442

443

training during pregnancy: a randomized controlled trial. *Am J Obstet Gynecol*. 2009;201(6):590–596.

- 21. Dias LA, Driusso P, Aita DL, Quintana SM, Bø K, Ferreira CH.
 Effect of pelvic floor muscle training on labour and newborn outcomes: a randomized controlled trial. *Rev Bras Fisioter*.
 2011;15(6):487–493.
- 22. Elden H, Ostgaard HC, Fagevik-Olsen M, Ladfors L, Hagberg H. Treatments of pelvic girdle pain in pregnant women:
 adverse effects of standard treatment, acupuncture and stabilising exercises on the pregnancy, mother, delivery and the
 fetus/neonate. *BMC Complement Altern Med*. 2008;8:34.
- 453
 453
 454
 455
 23. Salvesen KA, Mørkved S. Randomised controlled trial of pelvic floor muscle training during pregnancy. *Br Med J*.
 455
 456
 457
 457
 458
 459
 459
 450
 450
 450
 450
 451
 452
 452
 453
 454
 455
 455
 455
 455
 456
 457
 457
 458
 458
 459
 450
 450
 450
 450
 450
 451
 452
 452
 453
 454
 455
 455
 455
 456
 457
 457
 458
 458
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 450
 <l
- 456
 457
 458
 458
 24. Hatami T. Electromyographic studies of influence of pregnancy on activity of the abdominal wall muscles. I. An analysis of the patterns of activity of the abdominal wall in non-
- 459 pregnant women and pregnant women. Tohoku J Exp Med. 1961;75:71-80.

- 25. Takano H. Electro-myographic study of the abdominal muscles in pregnancy. *Jpn J Physiol*. 1956;6(1):22–28.
- Oliveira BD, Andrade AD, Lemos A, Brito VC, Pedrosa ML, Silva TN. Abdominal muscle electrical activity during labor expulsive stage: a cross-sectional study. *Rev Bras Fisioter*. 2011;15(6):445–451.
- 27. Buhimschi CS, Buhimschi IA, Malinow AM, Kopelman JN, Weiner CP. Pushing in labor: performance and not endurance. *Am J Obstet Gynecol*. 2002;186(6):1339–1344.
- Lai ML, Lin KC, Li HY, Shey KS, Gau ML. Effects of delayed pushing during the second stage of labor on postpartum fatigue and birth outcomes in nulliparous women. *J Nurs Res*. 2009;17(1):62–72.
- 29. Yildirim G, Beji NK. Effects of pushing techniques in birth on mother and fetus: a randomized study. *Birth*. 2008;35(1):25-30.
- Artal R, O'Toole M. Guidelines of the American College of Obstetricians and Gynecologists for exercise during pregnancy and the postpartum period. *Br J Sports Med.* 2003;37(1):6–12.